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Introduction 

INCORPORATION OF SUPERPOSITION INTO THE PROGRAM POISSON* 

S. Caspi, M. Helm and l. J . laslett 

lawrence Berkeley laboratory 
University of California 

Berkeley, California 94720 

In a previous series of reports (1, 2, 3), we have outlined and 

incorpo '~ated a mathematical analysis of a circular and elliptical boundary 

into the program POISSON thus making it possible to calculate with good 

accuracy the vector potential (and hence the field) of problems which have 

little or no symmetry. 

The analysis was based on the assumption that no sources are present 

outside the boundary introduced . As will be shown, this condition can be 

waived by incorporating superposition into the relaxation process in a way 

that solutions to electromagnetic problems which are affected by an outside 

field (such as the earth magnetic field) can be obtained. Such solutions are 

also possible in the area of hydrodynamics. Similarities in the physical laws 

that govern electromagnetism and incompressible invicid hydrodynamics indicate 

that POISSON can be used as a tool to solve such problems . It is, however, 

the introduction of boundary condition and superposition into the relaxation 

process of POISSON that make such solutions practical . 

We have introduced a combination of superposition and boundary condition 

into the relaxation process of POISSON in a manner that solutions can be 

obtained to electromagnetic problems placed in a background field as well as 

* This work was supported by the Office of Energy Research, Office of High 
Energy and Nuclear Physics, High Energy Physics Division, U.S. Dept. of 
Energy, under Contract No. DE-AC03-76SF0009B . 
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two-dimensional hydrodynamic problems involving potential flow and 

circulation. We have named the new program FOIL. In simple terms. the total 

potential. reduced by such background contributions. is subjected to the type 

of boundary treatment that was employed previously when no external 'sources' 

were present. 

Analysis 

FOIL calculates the vector potential Ai of each mesh point on the boundary 

by updating it with vector potential values of points on the inner pseudo 

boundary . This has previously been expressed as: 

outer 
Ai = 

N 
I 

j=l 

inner 
Aj (1) 

The matrix Eij which takes care of the geometry and symmetry. is based on the 

assumption that no sources exist outside the boundary. If we now assume that 

outside sources are present and their vector potential function ASource is 

known. we can define a superposed vector potential Asuper on the inner 

boundary as : 

A~uper-inner = A~nner _ ASource-inner 
i 

inner Source-i nner 
Note that A 

i 
is known and Ai has been calculated by the 

relaxation process. 

The next step is to update the values of the vector potential on the 

outer boundary according to: 

outer 
Ai - N 

E 
j-l 

Super-inner 
Aj 

2 

Source-outer 
+ Ai 

(2) 

( 3) 
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Once the outer boundary has been updated, the relaxation process is permitted 

to continue relaxing the entire mesh before executing relations 2 and 3 once 

more. This process is to continue until convergence is obtained. 

Uniform Flow and Circulation 

The vector potential (stream function) for uniform flow, Ux in the X 

direction and U in the Y direction, and for the circulation r is written as : 
y 

ASource = (U sin 8 - U cos 8)r + r tn r (4) 
x y 

~ 

from which Ux = aA/aY and Uy = -aA/aX (in analogy to B = VxA ez in 

similar magnetostatic problems) . Note that in the literature the value of r 

is usually divided by 2. . This expression was introduced into FOIL (FOIL is 

a clone of POISSON with the exception of the inclusion of equations 2 and 3) 

and the following examples are used for demonstration. 

Uniform Flow over a Cylinder with Circulation 

In this example we have a cylinder of radius r=4.0, a flow velocity 

Ux = 1.0, Uy = 0.0 and a circulation r = 8.0. 

These values were chosen in such a way that the combination r/(r U)=2 

coincides with the limiting case of a single stagnation point on the 

cylinder. This was intentionally done to achieve a simple visual effect of 

the stream line, Fig . 1. 
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Fig. 1. Uniform flow over a cylinder with circulation, 
r/(rU) = 2. 

Uniform Flow Over an Airfoil 

A more complete example is introduced by calculating the flow over a 

Kutta-Joukowski airfoil both analytically and by this method. We have an 

airfoil with a contour that corresponds to the complex transformation: 

c2 
, = Z + Z2 of a displaced circle of radius rca centered at Z=Xc + iYcand 

passing through the point Z=C. (Appendix A includes a short refreshment.) 

For such a body the circulation can be expressed as: 

r = 2 a U sin (6 + ~) 

where 6 = arcsin ( Yc ) and ~ is the angle between the wind velocity and the 
. a 

X axis. 
If we choose ~ = 0.0, Ux = 1.0, Yc E 0.30, Xc = -0.15 and c = 1.0 

(resulting in a circle with a z.!1.4l25 and the appropriate value r = 0.6 for 

the circulation), we arrive at the solution shown in Fig. 2. (See also 

Append 1x B.) 
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Fig. 2. Uniform flow over an airfoil, r = 0.6. 

Note that the stream line at the trailing edge appears continuous with the 

airfoil . Deviations from the theoretical value of r result in stream line 

plots shown in Fig. 3a,b,c, with r = 0.6, 0.5, and 0.7, respectively. The 

discontinuity in the streamline at the trailing edge of the airfoil is 

visual. This points out the way of estimating the approximate circulation for 

bodies of arbitrary shape. 

As a final check we have calculated analytically the absolute values of 

th~ velocity at several points and checked them against numerical values. 

These are compared in Table 1. 
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(a) 

( b ) 

(c) 

Fig. 3. Uniform flow over an a i rfol1; (a) correct circulation r = O. f>, 
(b)r=0.5 
(c) r ~ 0.7 
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Table 1. 

Y=o.o x -2.25 -2.15 -0.95 -0.35 1.05 2.15 2.25 

Theoretical 0.619 0.426 0.786 0.705 0.647 0.893 0.909 

Numerical 0.610 0.425 0.787 0.707 0.647 0.893 0.908 

X~0.05 Y -1.5 -1.0 -0.5 0.0 1.0 1.5 

Theoretical 0.802 0.770 0.728 0.674 1.615 1.460 

Numerical 0.802 0.770 0.729 0.676 1.615 1.459 

These results were computed using a mesh density of -850 points over an 

ellipse with a major axis of 2.5 and a minor axis of 1.5 . 

Uniform Field Over an Iron Ring 

Suppose we place an iron ring, with inner and outer radius a, b 

respectively, in a uniform external field, 8 t . One can show that for ex 
constant permeability ~, the ratio of the field in the ring 8int , to the 

external field Bext can be written as: 

= 

For this example we have taken a = 0.7, b ~ 1.1, and ~ = 10, and applied Bext 

= 1000. The theoretical value of 453.52 should be compared with 453.86 

calculated by FOIL (flux lines are plotted in Fig. 4a). Fig. 4b is a similar 

plot with an external field of Bext ~ 10000.0 and a realistic field-dependent 

permeability for the iron. In this case, the inner field, which is not a 

perfect dipole, varies from 6800 to 7800 Gauss. 
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Fig. 4. Uniform field over an iron ring; (a) ~ ~ 10, (b) ~ E realistic 
field-dependent. 
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Circle of radius a 
and center at t=O. 

Polar coord for t 
gi yen by 

t=re ie 

t-plane 

=r (cos e + i sin e). 

with r=a on the circle. 

where 

APPENDIX A 

-i .. t & (2 - 6)e 

Z-plane 

(with Xc~O) 

Circle of radius a 
and center at C. 

Origin of 2 at 0 

Circle passes through 

2=c (Real). 

sinp=Yc 
a 

with Xc ' O. 
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In the t-plane. write 

2 
W = t + iA = U (t + t-) + i r in t 

so that 

and 

t = Re. [U (t + ~2 ) + i r in t] 
2 

= U (r + !- ) cos a - r e r . 

a2 
1 = U (1 + 2 2)x - r tan- i 

x + y 

A = 1m [U (t + ~ 2) + i r in t ] 

a2 
= U (r - --) sin a + r in r 

r 

i r 2 2 
- 2'2)y + 2 in (x + y ). 
x + y 

= U (1 

expressions that satisfy the Riemann-Cauchy relations 

at - aA and ~yt = _ aA ax - dy QY ax 
for an analytic function t + iA of a complex argument x + iy. 

The velocity components in the t-plane can be obtained 

as ~ = e aA - e aA 
t-plane x dy y ax 

[ 
2 xy x]-- 2U a 2 2 2 + r -Z---2 ey (x + y ) x + Y 

= e 1 aA - e aA = [U r r ~ eM 
2 

(l - a) 
? 

- [U (l + 5 ) sin e + ~ ]ea. 
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The magnitude of this velocity in the t-plane may be obtained from these 
components, or directly as 

I ~ I = I ~~ I = I U (1 - at:) + i f I 
t-plane 

l - - cos 2 . 
r 

2 
2a + i a

2 sin 
r 

2a) + i r cos 
r a + ~ sin a I 

2a) + ~ sin a 
2 

]2 + [U !- sin 2a + r cos a ]2 
r2 r 

2 
= U (1 

2 
- 2a 2cos 

r 
) +2ur (l 

r 

At the surface of the circle -- i.e., at r=a -- this velocity in the t-plane 
becomes 

r ~ 

V = - (2U sin a + ij) ea t-plane 
at r=a 

Stagnation points occur on this surface, at angles as' if r = -2aU sin as 

(for r ~ 2aU) ; a single such point occurs, at as = - ~ radian, for 

r = 2aU . 

The complex position variables for the t and Z planes are related by 

t = ( Z - 6 )e-io , 

where 6 = X + iY c c with 

Note: I ~n c l. 

In anticipation of performing a Joukowski transformation, we wish that 
V cOat Z = c (a point on the surface of the circle). That is: 
t-plane 

-io we wish V = 0 at t = [(c-Xc) - iYc]e ,which is a point situated 
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on the circle in the t-plane at a polar coordinate angle 

9 = -tan-l ( Yc -0) = -(6+0). c-xc 
To achieve the result V = 0 (stagnation) at this point we therefore adopt the 

value r = 2aU sin(6 + 0). 

[We note, in passing, that this value of r would vanish (and hence the 

presumed lift would vanish) if 0 = -6.] 

The Joukowski transformation that may be employed to generate, by 
transformation from a circle, an "airfoil" in the { = ~ + i~ is 

[Complex arithmetic] 

For any point { in this {-plane, we may solve for the corresponding value of 
Z: 

Z = ~ + 
2 - c 

(selecting the sign of the square root so that points outside the airfoil fall 

outside the circle in the Z plane), 

and -io t = (Z - a)e . 

To compute the magnitude of velocity (at points on the surface of, or 
exteri or to, the airfoil) we then may write 

I V I = I :~ I = I dW/dt I 
d{/dZ 

I a
2 

r U(l - - ) + i -
= t2 t 

1(1 - ¥) (1 + ¥) 

(since dt 
dZ =1) 

[Complex arithmetic] 

This Quotient should be readily computed (say by use of complex arithmetic) 
save for the point at the trailing edge of the airfoil (where the value of Z 
is c) and an indeterminate form occurs. 
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APPENDIX B 

The program AFDIL (Library RUTH) is an interactive program designed to 

tabulate and/or plot the results of transforming a circle (radius "a") in the 

Z = X + iY plane into the C = ~ + iq plane by means of the transformation 

(wherein we treat c as real). 

2 
C = Z + L Z 

If a point on the circle coincides with Z = ic + iO, a singularity 

(vanishing derivative dC/dZ) occurs. A Joukowski airfoil results if the 

circle intersects one such point (to provide a sharp trailing edge), but 

surrounds the other such point. The vertical displacement of the center of 

the circle then gives the curving of the airfoil, while the horizontal 

displacement (say to the left) contributes to the thickness . 

In using the program, one firsts types the value of the parameter c (e.g., 

c=l). The value of the circle radius "a" may be entered if desired, followed 

by the X and Y coordinates of the center of the circle. Alternatively, the 

program will so compute the radius "a" so that the circle will pass through 

one of the points ic + iO (and will surround the other). 

The angle B locates the line from c to the center of the circle with respect 

to the real axis in the Z-plane, as illustrated . 
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c 

Z-P1ane 

0: Orgin of Z-p1ane 
C: Center of Circle 

The sketch suggests an example i n which , with c=l, the circle has been 

arranged to pass through the point +c +iO . With 

Xc = -0.15 and Yc = +0.30 
this requ i res that 

and 

a = ~ 1.4125 !! 1.18848&43 

B = tan-1 0. 30 !! tan-1 0.2&08&95&5 
1.15 

!! 14.&20814 degrees. 

while the point -c +i O rema i ns within the circle . 

2 
The result of the transformation, = Z + ~ applied to this circle is 

shown in the, plane on the following figure, whereon the axes extend between 

the limits ± 4c; i.e., between the limits ± 4.0 in the present case. [The 

"trailing " edge shown here at , = 2.0, ~ = 0 is the result of the 

transformation applied to the point X=c=l, YeO. ] 
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The transformation results from 
X = a cos e + X = a cos e - 0.15 c 
Y = a sin e + Y = a sin e + 0.30 c 

with a ="1.4125 ~ 1.18848643, using, = Z + c2
/z with c=l. 

Intersections with the horizontal axis ~=O occur at: 

e(deg.) 

-14.620874 (= -6) 
194.620874 (= 180 + 6) 
247.750976 

X 

1.0 
-1.3 
-0.6 

Y 

o 
o 

-0.8 

2.0 
-2.0692308 

-1.2 

o 
o 
o 

For the maximum extension to the left in the ,-plane, we have approximately : 

e II! 190.2 deg., X II! -1.32 

1 5 

Y • 0.09 ~ II! -2.074 ~ II! 0.038 
• 0.04 


